Кандидатсвай онлайн

  • en
  • ru
  • Преподаватели

    Доц. д-р  Гюрхан Хюсеинов Неджибов
    Доц. д-р Гюрхан Хюсеинов Неджибов

    Факултет: Факултет по математика и информатика

    Катедра: ИКОНОМИКА И МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ

    Кабинет: Корпус 3, стая 408

    Телефон: 054 830495 вътр. 343 К3

    Email: g.nedzhibov@shu.bg

    Приемно време: Понеделник и Сряда от 8:00-9:00; Вторник от 10.00-12.00ч


    2005 Г.Х. Неджибов, Изследвания върху методи за числено решаване на нелинейни уравнения и системи уравнения, p.151, защитена докторска дисертация, (2005).
    2024 G. Nedzhibov, Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition. Mathematics. 2024; 12(5):762. https://doi.org/10.3390/math12050762
    2023 Nedzhibov, G., Dynamic mode decomposition: an alternative algorithm for full-rank datasets, Applicationes Mathematicae 50 (2023), 55-65; DOI: 10.4064/am2465-4-2023 (Scopus SJR 0.3)
    2023 Nedzhibov, G., Extended Online DMD and Weighted Modifications for Streaming Data Analysis. Computation 2023, 11, 114. https://doi.org/10.3390/computation11060114 (Scopus SJR 0.389)
    2023 Nedzhibov, G., An Improved Approach for Implementing Dynamic Mode Decomposition with Control. Computation 2023, 11, 201. https://doi.org/10.3390/computation11100201 (Scopus SJR 0.389)
    2023 Nedzhibov, G., ONLINE DYNAMIC MODE DECOMPOSITION: AN ALTERNATIVE APPROACH FOR LOW RANK DATASETS, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 15, No. 1-2/2023; DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.229 Scopus, SJR 0.354)
    2023 Stoyanov, B.; Nedzhibov, G.; Dobrev, D.; Ivanova, T. Application of Decimated Mathematical Equations and Polynomial Root-Finding Method in Protection of Text Messages. Mathematics 2023, 11, 4982. https://doi.org/10.3390/math11244982 (Scopus SJR 3.5)
    2022 Gyurhan H. Nedzhibov, The Weierstrass iterative method as a Petrov–Galerkin method for solving eigenvalue problem, Journal of Computational and Applied Mathematics, Volume 405, 15 May 2022, 113961, https://doi.org/10.1016/j.cam.2021.113961 (Scopus SJR 0.875)
    2022 Gyurhan H. Nedzhibov, DYNAMIC MODE DECOMPOSITION: A NEW APPROACH FOR COMPUTING THE DMD MODES AND EIGENVALUES, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 14, No. 1-2/2022, pp.5-16; DOI https://doi.org/10.56082/annalsarscimath.2022.1-2.5 (Scopus, SJR 0.354)
    2022 Gyurhan H. Nedzhibov, A NEW ALGORITHM FOR DYNAMIC MODE DECOMPOSITION, MATHTECH 2022, Proceedings of the international conference, Volume 1, pp. 49– 55, (2022)
    2022 Nedzhibov, G. On Alternative Algorithms for Computing Dynamic Mode Decomposition. Computation 2022, 10, 210. https://doi.org/10.3390/computation10120210 (Scopus SJR 0.389)
    2022 Gyurhan H. Nedzhibov, Some new properties of the Weierstrass iterative method, AIP Conf. Proc. 2505, 080002 (2022) https://doi.org/10.1063/5.0100882
    2021 Gyurhan H. Nedzhibov, ON AN OBLIQUE PROJECTION METHOD FOR SOLVING THE EIGENVALUE PROBLEM OF THE COMPANION MATRIX, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 13, No. 1-2/2021, 59-69 (Scopus, SJR 0.354)
    2021 Gyurhan H. Nedzhibov, AN ITERATIVE METHOD FOR DIAGONALIZATION OF THE FROBENIUS COMPANION MATRIX, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 13, No. 1-2/2021, 45-58 (Scopus, SJR 0.354)
    2021 Pavlina K. Jordanova, and Gyurhan H. Nedzhibov, IPO and IPO-NM estimators in exponentiated Frechet case, AIP Conference Proceedings 2333, 150001 (2021); https://doi.org/10.1063/5.0044136 (Scopus, SJR 0.189)
    2020 Gyurhan H. Nedzhibov, The Inverse Weierstrass iterative method as a Projection method for solving eigenvalue problem, MATHTECH 2020, Proceedings of the international conference, Volume 1, (2020)
    2020 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 (Scopus, SJR 0.54)
    2019 Gyurhan H. Nedzhibov, On semilocal convergence analysis of the inverse Weierstrass method for simultaneous computing of polynomial zeros, Mathematics and its Applications: Annals of the Academy of Romanian Scientists, Vol. 11, No. 2, pp. 247-258, (2019). ISSN 2066-6594 (Scopus, SJR 0.354)
    2018 Gyurhan H. Nedzhibov, Improved local convergence analysis of the inverse Weierstrass method for simultaneous approxiations of polynomial zeros, MATHTECH 2018, Conference Proceeding, Volume 1, pp. 65-73, (2018). ISSN 1314-3921. (Национален референтен списък)
    2018 Gyurhan H. Nedzhibov, New local convergence theorems for the inverse Weierstrass method for simultaneous approximation of polynomial zeros, Mathematics and its Applications: Annals of the Academy of Romanian Scientists, Vol. 10, No. 2, pp. 266-279, (2018). ISSN 2066-6594 (Scopus, SJR 0.354)
    2016 Gyurhan H. Nedzhibov, "Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros", Communications in Numerical Analysis, Volume 2016, No. 1 (2016), 74-80. ISSN 2193-4215 http://dx.doi.org/10.5899/2016/cna-00261.
    2016 Gyurhan H. Nedzhibov, On local convergence analysys of the Inverse WDK method, MATHTECH 2016, Proceedings of the international conference, Volume 1, pp. 118-126, (2016). ISSN 1314-3921. (Национален референтен списък)
    2016 Gyurhan H. Nedzhibov, Local Convergence of the Inverse Weierstrass method for Simultaneous Approximation of Polynomial Zeros, International Journal of Mathematical Analysis, Vol. 10, 2016, no. 26, 1295-1304; ISSN: 1314-7579. (Scopus) https://doi.org/10.12988/ijma.2016.69110
    2015 Gyurhan H. Nedzhibov, Inverse Iterative Methods for Solving Nonlinear Equations, Mathematical and Software Engineering, Vol 1, No 1, pp. 6-11, (2015). ISSN: 2367-7449
    2014 Gyurhan H. Nedzhibov, On two modifications of Weierstrass-Dochev iterative method for solving polynomial equations, MATHTECH 2014, Proceedings of the international conference, Volume 1, pp. 84-90, (2014). ISSN 1314-3921. (Национален референтен списък)
    2014 Gyurhan H. Nedzhibov, Similarity transformations between some companion matrices, Application of Mathematics in Engineering and Economics (AMEE14), American Institute of Physics Conference Proceedings, 1631, pp. 375-382, (2014). ISBN: 978-0-7354-1919-3. (Scopus) .
    2013 Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, International Journal of Computer Mathematics, 90(5), pp.994-1007, (2013). ISSN:0020-7160 (Scopus)
    2013 Nedzhibov, G., Inverse Weierstrass-Durand-Kerner Iterative Method, International Journal of Applied Mathematics, Vol.28, Issue.2, pp. 1258-1264 (2013). ISSN:2051-5227 (Scopus)
    2012 Gyurhan H. Nedzhibov, Vejdi I. Hasanov, Newton-Secant method for solving systems of nonlinear equations, Mathematica Balkanica, New Series Vol. 26, 2012, Fasc. 3-4, pp.369-376, (2012). http://www.math.bas.bg/infres/MathBalk/MB-26/MB-26-369-376.pdf
    2012 Gyurhan H. Nedzhibov, A Steffensen type acceleration of iterative methods for solving nonlinear operator equations, Applied Mathematical and Computational Sciences, MiliPublications, Volume 3, Issue 4, pp. 329-335, (2012). ISSN 0976-1586
    2012 Nedzhibov, G. H., On Iterative methods for simultaneous computing arbitrary number of zeros of nonlinear equations, MATTEX 2012, Proceedings of the international conference, vol.1, pp. 72-79, (2012). ISSN 1314-3921. (Национален референтен списък)
    2012 Gyurhan H. Nedzhibov, A derivative-free iterative method for simultaneously computing an arbitrary number of zeros of nonlinear equations, Computers & Mathematicswith Applications, Volume 63, Issue 7, pp. 1185–1191, (2012). ISSN: 0898-1221 (Scopus)
    2011 Gyurhan H. Nedzhibov, An approach to accelerate iterative methods for solving nonlinear operator equations, Application of Mathematics in Engineering and Economics: 37thInternational Conference, AIP Conference Proceedings, Volume 1410, pp. 76-82, (2011). ISBN: 978-0-7354-1919-3. (Scopus). doi:http://dx.doi.org/10.1063/1.3664358
    2010 Gyurhan H. Nedzhibov, M.G. Petkov, On Some Modifications of Weierstrass-Dochev method for simultaneous extraction of only a part of all roots of polynomials, Application of Mathematicsin Engineering and Economics: 36th International Conference. AIP Conference Proceedings, Volume 1293, pp. 141-148 (2010). ISBN: 978-0-7354-1919-3. (Scopus). DOI: 10.1063/1.3515578
    2010 Nedzhibov, G. H., A Steffensen type acceleration of iterative methods for solving nonlinear operator equations, MATTEX 2010, Proceed. Of the International conference dedicated to the 130’th anniversary of academician Kiril Popov’s birth, Shumen University “Bsh K.Preslavski”, vol. 1, pp. 93-97, (2010). ISSN 1314-3921. (Национален референтен списък)
    2009 G.H. Nedzhibov, On a two-sided iterative method for solving nonlinear equations, Proceedings of the international conference dedicated to the 105’th anniversary of the birthof the pioneers of computing John Atanasoff and John von Neumann, Shumen University “Bsh K.Preslavski”, Volume 1, pp.48-52, (2009). ISSN 1314-3921.
    2008 G.H. Nedzhibov,A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Computational and Applied Mathematics, Vol. 222, pp. 244–250, (2008). ISSN: 0377-0427 (Scopus)
    2006 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1,p127-136, (2006). ISSN:1572-9265 (Scopus)
    2005 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Vol. 168, Issue 1, p320-332, 13p, (2005). ISSN: 0096-3003 (Scopus) DOI: 10.1016/j.amc.2004.08.020
    2005 G.H. Nedzhibov, M.G. Petkov, On Analitic Iterative Functions for Solving Nonlinear Equations and Systems of Equations, In: Numerical Analysis and Application, LNCS, SpringerVerlag, Berlin Heidelberg, pp 432–439 (2005). (Scopus) https://doi.org/10.1007/978-3-540-31852-1_52
    2005 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Vol. 162, Issue 1, pp. 427-433, 7p, (2005). ISSN: 0096-3003 (Scopus) DOI: 10.1016/j.amc.2003.12.103; (AN 15585248)
    2004 Г.Х. Неджибов, Модификации на Метода на Нютон за Решаване на Нелинейни Уравнения и Системи Нелинейни Уравнения, Сборник научни трудове посветено на100-годишнината от рождението на Джон Атанасов, Том 1, Университетско издателство "Еп. Константин Преславски Шумен, (2004). ISSN 1314-3921.
    2004 G.H. Nedzhibov, M.G. Petkov, A Family of Iterative Methods for Simultaneous Computing of All Zeros of Algebraic Equation, In: Applications of Mathematics in Engineering andEconomics, Bulvest-2000, Sofia, p.6, (2004). ISBN: 954-18-0301-6
    2003 G.H. Nedzhibov and M.G. Petkov, An acceleration of iterative processes, In: Mathematics and education in mathematics, Proceedings of Thirty Second Spring Conference of theUnion of Bulgarian Mathematicians, pp. 280–284, (2003).
    2003 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, pp.56–64, (2003). ISSN: 954-18-0301-6
    2002 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia,pp. 278–286, (2002). ISSN 1310–0157
    2023 Г.Х. Неджибов, Матрични методи с приложения на MATLAB, Унив. изд. \"Епископ Константин Преславски\", p.214, Шумен, (2023).
    2011 Г.Х. Неджибов, Въведение в математическото моделиране с числени методи, Унив. изд. \"Епископ Константин Преславски\", p.151, Шумен, (2011).
    2023 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ЦИТИРАНА В: Ramzan, S.; Awan, M.U.; Dragomir, S.S.; Bin-Mohsin, B.; Noor, M.A. Analysis and Applications of Some New Fractional Integral Inequalities. Fractal Fract. 2023, 7, 797. https://doi.org/10.3390/fractalfract7110797
    2023 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ЦИТИРАНА В: Buddhi Prasad Sapkota, Jivandhar Jnawali, New Variants of Newton’s Method for Solving Nonlinear Equations. (2023). European Journal of Pure and Applied Mathematics, 16(4), 2419-2430. https://doi.org/10.29020/nybg.ejpam.v16i4.4951
    2023 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ЦИТИРАНА В: Supriadi Putra, M Imran, Ayunda Putri, Rike Marjulisa, Variant of Trapezoidal-Newton Method for Solving Nonlinear Equations and its Dynamics, IJQRM, Vol 4, No 4 (2023). DOI: https://doi.org/10.46336/ijqrm.v4i4.539
    2023 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Цитирана в: S. Liu, Y. Li and Z. Jin, \"Research on Enhanced AES Algorithm Based on Key Operations,\" 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 2023, pp. 318-322, doi: 10.1109/ICCASIT58768.2023.10351719.
    2023 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Цитирана в: T. Hasija, K. R. Ramkumar, B. Singh, A. Kaur and S. K. Mittal, \"A new Polynomial based Symmetric Key Algorithm using Polynomial Interpolation Methods,\" 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 2023, pp. 675-681, doi: 10.1109/CSNT57126.2023.10134686.
    2023 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Цитирана в: K. R. Ramkumar, T. Hasija, B. Singh, A. Kaur and S. K. Mittal, \"Key Generation using Curve Fitting for Polynomial based Cryptography,\" 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2023, pp. 591-596, doi: 10.1109/ICOEI56765.2023.10125901.
    2023 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Цитирана в: Fursan Thabit, Ozgu Can, Asia Othman Aljahdali, Ghaleb H. Al-Gaphari, Hoda A. Alkhzaimi, Cryptography Algorithms for Enhancing IoT Security, Internet of Things, Volume 22, 2023, https://doi.org/10.1016/j.iot.2023.100759.
    2023 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Цитирана в: Fursan Thabit, Ozgu Can, Asia Othman Aljahdali, Ghaleb H. Al-Gaphari, Hoda A. Alkhzaimi, Cryptography Algorithms for Enhancing IoT Security, Internet of Things, Volume 22, 2023, https://doi.org/10.1016/j.iot.2023.100759.
    2023 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Цитирана в: B Kaushik, V Malik, V Saroha, A Review Paper on Data Encryption and Decryption, International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; Apr 2023, https://doi.org/10.22214/ijraset.2023.50101.
    2023 Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ЦИТИРАНА В: Shams, M.; Carpentieri, B. On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models. Mathematics 2023, 11, 4914. https://doi.org/10.3390/math11244914
    2023 Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ЦИТИРАНА В: Mudassir Shams , Nasreen Kausar , Serkan Araci and Georgia Irina Oros, Numerical scheme for estimating all roots of non-linear equations with applications, AIMS Mathematics, 8(10): 23603–23620, DOI: 10.3934/math.20231200
    2023 Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ЦИТИРАНА В: Shams, M., Kausar, N., Araci, S., Kong, L., & Carpentieri, B. (2024). Highly Efficient Family of Two-Step Simultaneous Method for All Polynomial Roots. AIMS Mathematics, 9(1), 1755–1771. https://doi.org/10.3934/math.2024085
    2023 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Ramzan, S.; Awan, M.U.; Dragomir, S.S.; Bin-Mohsin, B.; Noor, M.A. Analysis and Applications of Some New Fractional Integral Inequalities. Fractal Fract. 2023, 7, 797. https://doi.org/10.3390/fractalfract7110797
    2023 Nedzhibov, G.H., Hasanov, V.I. & Petkov, M.G. On some families of multi-point iterative methods for solving nonlinear equations. Numer Algor 42, 127–136 (2006). https://doi.org/10.1007/s11075-006-9027-5 ЦИТИРАНА В: Raziyeh Erfanifar, Masoud Hajarian, Developing HSS iteration schemes for solving the quadratic matrix equation, IET Control Theory & Applications, 2023, https://doi.org/10.1049/cth2.12585
    2023 Nedzhibov, G.H., Hasanov, V.I. & Petkov, M.G. On some families of multi-point iterative methods for solving nonlinear equations. Numer Algor 42, 127–136 (2006). https://doi.org/10.1007/s11075-006-9027-5 ЦИТИРАНА В: Raziyeh Erfanifar, Masoud Hajarian, Weight splitting iteration methods to solve quadratic nonlinear matrix equation MY2+NY+P=0, Journal of the Franklin Institute, Volume 360, Issue 3, 2023, Pages 1904-1928, ISSN 0016-0032, https://doi.org/10.1016/j.jfranklin.2022.12.005.
    2023 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Rezaiee-Pajand, M., Arabshahi, A., Gharaei-Moghaddam, N. Evaluation of iterative methods for solving nonlinear scalar equations. Iranian Journal of Numerical Analysis and Optimization, 2023; 13(3): 426-443. doi: 10.22067/ijnao.2022.75865.1118
    2023 Nedzhibov, G.H. Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros. Commun. Numer. Anal. 2016, 2016, 74–80. ЦИТИРАНА В: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
    2023 Nedzhibov, G.H. On semilocal convergence analysis of the Inverse Weierstrass method for simultaneous computing of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019, 11, 247–258. ЦИТИРАНА В: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
    2023 Nedzhibov, G.H. On semilocal convergence analysis of the Inverse Weierstrass method for simultaneous computing of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019, 11, 247–258. ЦИТИРАНА В: Shams, M.; Carpentieri, B. Efficient Inverse Fractional Neural Network-Based Simultaneous Schemes for Nonlinear Engineering Applications. Fractal Fract. 2023, 7, 849. https://doi.org/10.3390/fractalfract7120849
    2023 Nedzhibov, G.H. New local convergence theorems for the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2018, 10, 266–279. ЦИТИРАНА В: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
    2023 Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, October 2018; Vol.1, p.66–73. ЦИТИРАНА В: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
    2023 Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, October 2018; Vol.1, p.66–73. ЦИТИРАНА В: Shams, M.; Carpentieri, B. Efficient Inverse Fractional Neural Network-Based Simultaneous Schemes for Nonlinear Engineering Applications. Fractal Fract. 2023, 7, 849. https://doi.org/10.3390/fractalfract7120849
    2023 Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, October 2018; Vol.1, p.66–73. ЦИТИРАНА В: Shams, M., Kausar, N., Araci, S., Kong, L., & Carpentieri, B. (2024). Highly Efficient Family of Two-Step Simultaneous Method for All Polynomial Roots. AIMS Mathematics, 9(1), 1755–1771. https://doi.org/10.3934/math.2024085
    2022 G. H. Nedzhibov, “Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations,” International Journal of Computer Mathematics, pp. 994–1007, 2013. Цитирана в: Shams, M., Rafiq, N., Kausar, N., Mir, N. A., Alalyani, A. (2022). Computer Oriented Numerical Scheme for Solving Engineering Problems. Computer Systems Science and Engineering, 42(2), 689–701. DOI: 10.32604/csse.2022.022269
    2022 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Hesham Alhumyani, Ibrahim Alrube, Sameer Alsharif, Ashraf Afifi, Chokri Ben Amar, Hala S.El-Sayed and Osama S. Faragallah, Analytic Beta-Wavelet Transform-Based Digital Image Watermarking for Secure Transmission, Computers, Materials & Continua, 2022, vol.70, no.3, DOI:10.32604/cmc.2022.020338
    2022 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Al-Muhammed, M.J.; Abu Zitar, R. Light and Secure Encryption Technique Based on Artificially Induced Chaos and Nature-Inspired Triggering Method. Symmetry 2022, 14, 218. https://doi.org/10.3390/sym14020218
    2022 Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Цитирана в: Al-Muhammed, M.J., Al-Daraiseh, A. Encryption technique based on fuzzy neural network hiding module and effective distortion method. Neural Comput & Applic (2022). https://doi.org/10.1007/s00521-022-06950-x
    2022 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ЦИТИРАНА В: Morch, H., Yuan, S., Duchene, L., Harzallah, R., & Habraken, A. M. (2022). A review of higher order Newton type methods and the effect of numerical damping for the solution of an advanced coupled Lemaitre damage model. Finite Elements in Analysis and Design, 209, 103801
    2022 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ЦИТИРАНА В: Nawaz, Y.; Arif, M.S.; Abodayeh, K. A Compact Numerical Scheme for the Heat Transfer of Mixed Convection Flow in Quantum Calculus. Appl. Sci. 2022, 12, 4959. https://doi.org/10.3390/app12104959
    2022 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ЦИТИРАНА В: Liu, Y., Long, T., Jiao, W., He, G., Chen, B., & Huang, P. (2022). A General Relative Radiometric Correction Method for Vignetting and Chromatic Aberration of Multiple CCDs: Take the Chinese Series of Gaofen Satellite Level-0 Images for Example. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-25.
    2022 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Volos, C. Symmetry in Chaotic Systems and Circuits. Symmetry 2022, 14, 1612. https://doi.org/10.3390/sym14081612
    2022 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Zhang, Y., Chen, A., & Chen, B. (2022). A unified improvement of the AES algorithm. Multimedia Tools and Applications, 81(13), 18875-18895.
    2022 G. H. Nedzhibov, Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, International Journal of Computer Mathematics, 90(5), 994- 1007 (2013). ЦИТИРАНА В: Mohamed, M. S., Elagan, S. K., Almalki, S. J., Alharthi, M. R., El-Badawy, M. F., Najati, S. A., & Mahdy, A. M. (2022). Optimal Control and Solving of Cellular DNA Cancer Model. Appl. Math, 16(1), 109-119.
    2021 G. H. Nedzhibov, “Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations,” International Journal of Computer Mathematics, pp. 994–1007, 2013. Цитирана в: Naila Rafiq, Mudassir Shams, Nazir Ahmad Mir, Yaе Ulrich Gaba, \"A Highly Efficient Computer Method for Solving Polynomial Equations Appearing in Engineering Problems\", Mathematical Problems in Engineering, vol. 2021, Article ID 9826693, 22 pages, 2021. https://doi.org/10.1155/2021/9826693
    2021 G. H. Nedzhibov, “Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations,” International Journal of Computer Mathematics, pp. 994–1007, 2013. Цитирана в: Mudassir Shams, Naila Rafiq, Nasreen Kausar, Shams Forruque Ahmed, Nazir Ahmad Mir, Suvash Chandra Saha, \"Inverse Family of Numerical Methods for Approximating All Simple and Roots with Multiplicity of Nonlinear Polynomial Equations with Engineering Applications\", Mathematical Problems in Engineering, vol. 2021, Article ID 3124615, 9 pages, 2021. https://doi.org/10.1155/2021/3124615
    2021 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Al-Muhammed, M.J., Al-Daraiseh, A. Randomly Distorted Double Substitution Encryption Technique with Effective Block Diffusion and Chaos-Induced Noise. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-021-06282-3
    2021 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Ramkumar J., Baskar M., Suresh A., Arulananth T. S., Amutha B. (2021) Modified Transaction Against Double-Spending Attack Using Blockchain to Secure Smart Cities. In: Chakraborty C., Lin J.CW., Alazab M. (eds) Data-Driven Mining, Learning and Analytics for Secured Smart Cities. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72139-8_8
    2021 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Mohammed N. Alenezi and Fawaz S. Al-Anzi, A Study of Z-Transform Based Encryption Algorithm, International Journal of Communication Networks and Information Security (IJCNIS), Vol. 13, No. 2, August 2021
    2021 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Louay Flaieh Hasan, Amani Ali Elmetwaly Ali Ibrahim, Syed Zulkarnain Bin Syed Idrus, Variable Rounds Block Cipher Algorithm Design, International Journal of Multidisciplinary Sciences and Advanced Technology Vol 2 No 2 (2021) 1–14
    2021 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ЦИТИРАНА В: Huda J. Saeed, Noori Y. Abdul-Hassan. (2021). An Efficient Three-step Iterative Methods Based on Bernstein Quadrature Formula for Solving Nonlinear Equations. Basrah Journal of Science, 39(3), 355–383.
    2021 G. Nedzhibov, on a Few Iterative Methods for Solving Nonlinear Equations, Appl. Math. Eng. Econ., 28 (2002) 1-8 ЦИТИРАНА В: Huda J. Saeed, Noori Y. Abdul-Hassan. (2021). An Efficient Three-step Iterative Methods Based on Bernstein Quadrature Formula for Solving Nonlinear Equations. Basrah Journal of Science, 39(3), 355–383.
    2021 G. H. Nedzhibov, “Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations,” International Journal of Computer Mathematics, pp. 994–1007, 2013. ЦИТИРАНА В: Shams, M., Rafiq, N., Kausar, N. et al. On highly efficient derivative-free family of numerical methods for solving polynomial equation simultaneously. Adv Differ Equ 2021, 465 (2021). https://doi.org/10.1186/s13662-021-03616-1
    2021 G. H. Nedzhibov, “Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations,” International Journal of Computer Mathematics, pp. 994–1007, 2013. ЦИТИРАНА В: Shams, M., Rafiq, N., Kausar, N. et al. On iterative techniques for estimating all roots of nonlinear equation and its system with application in differential equation. Adv Differ Equ 2021, 480 (2021). https://doi.org/10.1186/s13662-021-03636-x
    2021 Nedzhibov, G.H. Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros. Commun. Numer. Anal. 2016, 2016, 74–80. ЦИТИРАНА В: Naila Rafiq, Mudassir Shams (2021) Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously. Computers, Materials & Continua, 69 (2). pp. 2635-2651.
    2021 Nedzhibov, G.H. Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros. Commun. Numer. Anal. 2016, 2016, 74–80. ЦИТИРАНА В: Naila Rafiq, Mudassir Shams (2021) Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously. Computers, Materials & Continua, 69 (2). pp. 2635-2651.
    2020 Stoyanov, B.; Nedzhibov, G. Symmetric Key Encryption Based on Rotation-Translation Equation. Symmetry 2020, 12, 73. ЦИТИРАНА В: Thoai, V.P.; Kahkeshi, M.S.; Huynh, V.V.; Ouannas, A.; Pham, V.-T. A Nonlinear Five-Term System: Symmetry, Chaos, and Prediction. Symmetry 2020, 12, 865.
    2020 Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, October 2018; Vol.1, p.66–73. ЦИТИРАНА В: Marcheva, P.I.; Ivanov, S.I. Convergence Analysis of a Modified Weierstrass Method for the Simultaneous Determination of Polynomial Zeros. Symmetry 2020, 12, 1408.
    2020 Nedzhibov, G.H. On semilocal convergence analysis of the Inverse Weierstrass method for simultaneous computing of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019, 11, 247–258. ЦИТИРАНА В: Marcheva, P.I.; Ivanov, S.I. Convergence Analysis of a Modified Weierstrass Method for the Simultaneous Determination of Polynomial Zeros. Symmetry 2020, 12, 1408.
    2020 G. H. Nedzhibov, Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, International Journal of Computer Mathematics, (2013), 994-1007. ЦИТИРАНА В: Shams, M.; Mir, N.; Rafiq, N. On Efficient Iterative Numerical Methods for Simultaneous Determination of all Roots of Non-Linear Function. Preprints 2020, 2020020410 (doi: 10.20944/preprints202002.0410.v1).
    2020 G. H. Nedzhibov, “Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations,” International Journal of Computer Mathematics, vol. 90, no. 5, pp. 994–1007, 2013. ЦИТИРАНА В: Naila Rafiq , Saima Akram , Nazir Ahmad Mir , and Mudassir Shams, Study of Dynamical Behavior and Stability of Iterative Methods for Nonlinear Equation with Applications in Engineering, Mathematical Problems in EngineeringVolume 2020, Article ID 3524324, 20 pageshttps://doi.org/10.1155/2020/3524324
    2020 G. H. Nedzhibov, “Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations,” International Journal of Computer Mathematics, vol. 90, no. 5, pp. 994–1007, 2013. ЦИТИРАНА В: Mudassir Shams, Nazir Ahmad Mir, Naila Rafiq, A. Othman Almatroud, and Saima Akram, On Dynamics of Iterative Techniques for Nonlinear Equation withApplications in Engineering, Mathematical Problems in EngineeringVolume 2020, Article ID 5853296, 17 pageshttps://doi.org/10.1155/2020/5853296
    2020 G.H. Nedzhibov, Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, J. Comput. Math., 90 (5) (2013), pp. 994-1007 ЦИТИРАНА В: Nazir Ahmad Mir, Mudassir Shams, NailaRafiq, S.Akram, M.Rizwan, Derivative free iterative simultaneous method for finding distinct roots of polynomial equation, Alexandria Engineering Journal Volume 59, Issue 3, June 2020, Pages 1629-1636. https://doi.org/10.1016/j.aej.2020.04.009
    2020 G. H. Nedzhibov, Iterative methods for simultaneous computing arbitrary number of multiple zeros of non-linear equations, Inrern. J. Cornput. Math,, (2013) 994-1007. ЦИТИРАНА В: Nazir Ahmad Mir, Mudassir Shams, Naila Rafiq, Saima Akram, Rafiq Ahmed, On Family of Simultaneous Method for Finding Distinct as Well as Multiple Roots ofNon-linear Equation, Punjab University Journal of Mathematics(ISSN 1016-2526)Vol. 52(6)(2020) pp. 31-44.
    2020 Nedzhibov, G.H. Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros. Commun. Numer. Anal. 2016, 2016, 74–80. ЦИТИРАНА В: Marcheva, P.I.; Ivanov, S.I. Convergence Analysis of a Modified Weierstrass Method for the Simultaneous Determination of Polynomial Zeros. Symmetry 2020, 12, 1408.
    2020 Nedzhibov, G.H. Local Convergence of the Inverse Weierstrass Method for Simultaneous Approximation of Polynomial Zeros. Int. J. Math. Anal. 2016, 10, 1295–1304. ЦИТИРАНА В: Marcheva, P.I.; Ivanov, S.I. Convergence Analysis of a Modified Weierstrass Method for the Simultaneous Determination of Polynomial Zeros. Symmetry 2020, 12, 1408.
    2020 Nedzhibov, G.H. On local convergence analysis of the Inverse WDK method. In Proceedings of the MATTEX 2016 Conference, Shumen, Bulgaria, 11–13 November 2016; Volume 1, pp. 118–126. ЦИТИРАНА В: Marcheva, P.I.; Ivanov, S.I. Convergence Analysis of a Modified Weierstrass Method for the Simultaneous Determination of Polynomial Zeros. Symmetry 2020, 12, 1408.
    2020 Nedzhibov, G.H. New local convergence theorems for the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2018, 10, 266–279. ЦИТИРАНА В: Marcheva, P.I.; Ivanov, S.I. Convergence Analysis of a Modified Weierstrass Method for the Simultaneous Determination of Polynomial Zeros. Symmetry 2020, 12, 1408.
    2019 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Ioannis K. Argyros and Ramandeep Behl, Ball Comparison for Some Efficient Fourth Order Iterative Methods Under Weak Conditions, Mathematics 2019, 7(1), 89. https://doi.org/10.3390/math7010089
    2019 Nedzhibov, G.H.; Petkov, M.G. On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial. Appl. Math. Comput. 2005, 162, 427–433. ЦИТИРАНА В: Slav I. Cholakov, Local and Semilocal Convergence of Wang-Zheng’s Method for Simultaneous Finding Polynomial Zeros, Symmetry 2019, 11(6), 736; https://doi.org/10.3390/sym11060736
    2019 Nedzhibov G.H. A Derivative-Free Iterative Method for Simultaneously Computing an Arbitrary Number of Zeros of Nonlinear Equations, Computers and Mathematics with Applications. 2012. vol. 63. no. 7. pp. 1185–1191. ЦИТИРАНА В: Бычков, Ю. А., Соловьева, Е. Б., & Щербаков, С. В. (2019). Аналитически-численный алгоритм вычисления корней алгебраических уравнений с заданными предельными погрешностями. Труды СПИИРАН, 18(6), 1491-1514. https://doi.org/10.15622/sp.2019.18.6.1491-1514
    2018 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Jivandhar Jnawali, Chet Raj Bhatta, Two Higher Order Iterative Methods for Solving Nonlinear Equations, Journal of the Institute of Engineering, 14(1): 179-187, 2018
    2018 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Argyros, Ioannis K.; George, Santhosh, Ball Convergence Theorems for General Iterative Procedures and Their Applications, Southeast Asian Bulletin of Mathematics . 2018, Vol. 42 Issue 3, p315-326. 12p
    2018 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Jen-Yuan Chen, David R.Kincaid, Bei-RuLin, A variant of Newton’s method based on Simpson’s three-eighths rule for nonlinear equations, Applied Mathematics Letters, Volume 79, May 2018, Pages 1-5
    2018 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Amin Majd, Golnaz Sahebi, Masoud Daneshtalab, Juha Plosila, Shahriar Lotfi, Hannu Tenhunen, Parallel imperialist competitive algorithms, High performance computing in modeling and simulation, Special issue paper, 16 january 2018
    2018 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: K. Parand and M. Nikarya, A Novel Method to Solve Nonlinear Klein-Gordon Equation Arising in Quantum Field Theory Based on Bessel Functions and Jacobian Free Newton-Krylov Sub-Space Methods, Communications in Theoretical Physics, Volume 69, Number 6, pp.637-644, 2018
    2017 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Weiwei Yang, Qin Ni, A new cubic convergent method for solving a system of nonlinear equations, International Journal of Computer Mathematics, Volume 94, pp.1968-1980, 2017
    2017 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Weiwei Yang, Qin Ni, A new cubic convergent method for solving a system of nonlinear equations, International Journal of Computer Mathematics, Volume 94, pp.1968-1980, 2017
    2017 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: F.A.SHAH, M.A. NOOR, APPLICATION OF DECOMPOSITION TECHNIQUE AND EFFICIENT METHODS FOR THE APPROXIMATE SOLUTION OF NONLINEAR EQUATIONS, U.P.B. Sci. Bull., Series A, Vol. 79, Iss.3, pp. 171-180, 2017
    2017 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: M. Saqib, M. Iqbal, Two New Cubically Convergent Iteration Schemes for Resolution of Nonlinear Equations Based On Quadrature Rules, Punjab University, Journal of Mathematics (ISSN 1016-2526), Vol. 49(1) pp. 75-83, 2017
    2017 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Slav I.Cholakov, Maria T.Vasileva, A convergence analysis of a fourth-order method for computing all zeros of a polynomial simultaneously, Journal of Computational and Applied Mathematics, Volume 321, Pages 270-283, 2017
    2017 Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ЦИТИРАНА В: V.K.Kyncheva, V.V.Yotov, S.I.Ivanov, Convergence of Newton, Halley and Chebyshev iterative methods as methods for simultaneous determination of multiple polynomial zeros, Applied Numerical Mathematics, Volume 112, Pages 146-154, 2017
    2017 Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ЦИТИРАНА В: Sascha Worz, Heinz Bernhardt, A global convergent derivative-free method for solving a system of non-linear equations, Numerical Algorithms, Volume 76, Issue 1, pp 109–124, 2017
    2016 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Mahdi Abdollahi, Asgarali Bouyer, Davoud Abdollahi, Improved cuckoo optimization algorithm for solving systems of nonlinear equations, The Journal of Supercomputing, March 2016, Volume 72, Issue 3, pp 1246-1269;
    2016 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Mona Narang, Saurabh Bhatia, V. Kanwar, New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations, Applied Mathematics and Computation Volume 275, 15 February 2016, p. 394–403
    2016 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Mona Narang, Saurabh Bhatia, V. Kanwar, New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations, Applied Mathematics and Computation Volume 275, 15 February 2016, p. 394–403
    2016 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: M Jureczko, S Duda, Solving a system of nonlinear equations with the use of optimization methods in problems related to the wheel-rail contact, Journal of Applied Mathematics and computational mechanics, 2016, 15 (2), p.53-64 DOI: 10.17512/jamcm.2016.2.06
    2016 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: A Majd, M Abdollahi, G Sahebi, Multi-population parallel imperialist competitive algorithm for solving systems of nonlinear equations, International Conference on High Performance Computing & Simulation (HPCS), IEEE Xplore Digital Library, pp.767 – 775; http://ieeexplore.ieee.org/document/7568412/
    2016 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Mahdi Abdollahi, Asgarali Bouyer, Davoud Abdollahi, Improved cuckoo optimization algorithm for solving systems of nonlinear equations, The Journal of Supercomputing, March 2016, Volume 72, Issue 3, pp 1246–1269 (Springer)
    2016 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: GA Anastassiou, IK Argyros, Ball Convergence of a Sixth Order Iterative Method, Intelligent Numerical Methods, Applications to Fractional Calculus, Volume 624 of the series Studies in Computational Intelligence, 2016, pp 297-307 – Springer
    2016 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: GA Anastassiou, IK Argyros, Ball Convergence of a Sixth Order Iterative Method, Intelligent Numerical Methods, Applications to Fractional Calculus, Volume 624 of the series Studies in Computational Intelligence, 2016, pp 297-307 – Springer
    2016 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: D.K.R. Babajee, A. Cordero , J.R. Torregrosa, Study of iterative methods through the Cayley Quadratic Test, Journal of Computational and Applied Mathematics, Volume 291, 1 January 2016, Pages 358–369
    2016 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Wartono, M. Soleh, I. Suryani, Muhafzan, Chebyshev-Halley’s Method without Second Derivative of Eight-Order Convergence, Global Journal of Pure and Applied Mathematics, ISSN 0973-1768 Volume 12, Number4, (2016), pp. 2987–2997
    2016 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Alicia Cordero, Juan R. Torregrosa, On the Design of Optimal Iterative Methods for Solving Nonlinear Equations, Advances in Iterative Methods for Nonlinear Equations Volume 10 of the series SEMA SIMAI Springer Series, pp 79-111, 28 September 2016
    2016 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Shin Min Kang, Arif Rafiq, Shahzad Ahmad, Young Chel Kwun, New Iterative Method with Higher-order Convergence for Scalar Equations, International Journal of Mathematical Analysis Vol. 10, 2016, no. 7, 339 – 356
    2016 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: SM Kang, A Rafiq, F Ali, YC Kwun, Iterative Methods for Single Variable Equations, International Journal of Mathematical Analysis Vol. 10, 2016, no. 6, 279 - 290
    2016 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: J. Nonlinear Sci. Appl. 9 (2016), 1035-1042.
    2016 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Ioannis K. Argyros, Santhosh George, Shobha M. Erappa, Ball convergence for an eighth order efficient method under weak conditions in Banach spaces, SeMA Journal, 2016; doi:10.1007/s40324-016-0098-5
    2015 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Miodrag S. Petkovic & Lidija Z. Rancic, On the guaranteed convergence of a cubically convergent Weierstrass-like root-finding method, International Journal of Computer Mathematics, Volume 92, Issue 6, 2015. DOI:10.1080/00207160.2014.938063
    2015 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Sep2005, Vol. 168 Issue 1, p320-332, 13p ЦИТИРАНА В: Miodrag S. Petkovic & Lidija Z. Rancic, On the guaranteed convergence of a cubically convergent Weierstrass-like root-finding method, International Journal of Computer Mathematics, Volume 92, Issue 6, 2015. DOI:10.1080/00207160.2014.938063
    2015 Gyurhan H. Nedzhibov, A derivative-free iterative method for simultaneously computing an arbitrary number of zeros of nonlinear equations, Computers & Mathematicswith Applications, Volume 63, Issue 7, pp. 1185–1191, (2012). ЦИТИРАНА В: Miodrag S. Petkovic & Lidija Z. Rancic, On the guaranteed convergence of a cubically convergent Weierstrass-like root-finding method, International Journal of Computer Mathematics, Volume 92, Issue 6, 2015. DOI:10.1080/00207160.2014.938063
    2015 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: JL Hueso, E Martinez, C Teruel, Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems, Journal of Computational and Applied Mathematics, Volume 275, Pages 412–420, February 2015.
    2015 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: H. Esmaeili, M. Ahmadi, An efficient three-step method to solve system of nonlinear equations, Applied Mathematics and Computation, Volume 266, 1 September 2015, Pages 1093–1101.
    2015 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: J. Alikhani Koupaei, S.M.M. Hosseini, A new hybrid algorithm based on chaotic maps for solving systems of nonlinear equations, Chaos, Solitons & Fractals, Volume 81, Part A, December 2015, Pages 233–245.
    2015 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Yugui Li, Yanxu Wei, and Yantao Chu, Research on Solving Systems of Nonlinear Equations Based on Improved PSO, Mathematical Problems in Engineering Volume 2015 (2015), Article ID 727218, 13 pages.
    2015 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Ioannis K. Argyros, Santhosh George, Local Convergence for an Efficient Eighth Order Iterative Method with a Parameter for Solving Equations Under Weak Conditions, International Journal of Applied and Computational Mathematics, pp 1-10, (2015) DOI 10.1007/s40819-015-0078-y
    2015 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Ioannis K. Argyros, Santhosh George, Local Convergence for an Efficient Eighth Order Iterative Method with a Parameter for Solving Equations Under Weak Conditions, International Journal of Applied and Computational Mathematics, pp 1-10, (2015) , DOI 10.1007/s40819-015-0078-y
    2015 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Farooq Ahmed Shah, Muhammad Aslam Noor, Some numerical methods for solving nonlinear equations by using decomposition technique, Applied Mathematics and Computation, Volume 251, 15 January 2015, Pages 378–386
    2015 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Farooq Ahmed Shah, Muhammad Aslam Noor, Higher order iterative schemes for nonlinear equations using decomposition technique, Applied Mathematics and Computation, Volume 266, 1 September 2015, Pages 414–423
    2015 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Jayakumar Jayaraman, Kalyanasundaram M., Power means based modification of Newton’s method for solving nonlinear equations with cubic convergence, International Journal of Applied Mathematics and Computation, Vol 6, No 2, 2015, p.1-6
    2015 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Jayakumar Jayaraman, Kalyanasundaram M., Power means based modification of Newton’s method for solving nonlinear equations with cubic convergence, International Journal of Applied Mathematics and Computation, Vol 6, No 2, 2015, p.1-6
    2014 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: P.D. Proinov, M.D. Petkova, Convergence of the two-point Weierstrass root-finding method, Japan Journal of Industrial and Applied Mathematics, June 2014, Volume 31, Issue 2, pp 279-292
    2014 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Farooq Ahmed Shah, Modified Homotopy Perturbation Technique for the Approximate Solution of Nonlinear Equations, Chinese Journal of Mathematics Volume 2014 (2014), Article ID 787591, 9 pages, http://dx.doi.org/10.1155/2014/787591
    2014 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Mostafa Ouarit, Ali Souissi and Mohammed Ziani, Applied Mathematical Sciences, Vol. 8, 2014, no. 62, 3093 – 3107
    2014 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: M.A. HAFIZ and A. E. ALAMIR, Solving Nonlinear Systems Using fourth Order Iterative method, British Journal of Mathematics & Computer Science 4(1): 90-103, 2014.
    2014 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Слав И. Чолаков, Сходимост на итерационни методи от типа на Чебишов за едновременна апроксимация на нули на полиноми, дисертация за присъждане на ОНС „доктор“, ПУ „Паисий Хилендарски“ гр. Пловдив, 2014.
    2014 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: DKR Babajee, On a two-parameter Chebyshev-Halley-like family of optimal two-point fourth order methods free from second derivatives, Afrika Matematika, DOI 10.1007/s13370-014-0237-z, March 2014.
    2014 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Милена Д. Петкова, Локална и полулокална сходимост на едностъпковия и двустъпковия метод на Вайерщрас за едновременна апроксимация на нули на полиноми, дисертация за присъждане на ОНС „доктор“, ПУ „Паисий Хилендарски“ гр. Пловдив, 2014.
    2014 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Слав И. Чолаков, Сходимост на итерационни методи от типа на Чебишов за едновременна апроксимация на нули на полиноми, дисертация за присъждане на ОНС „доктор“, ПУ „Паисий Хилендарски“ гр. Пловдив, 2014.
    2014 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Стоил И. Иванов, Сходимост на итерационния метод на Халей за индивидуална и едновременна апроксимация на нули на полиноми, дисертация за присъждане на ОНС „доктор“, ПУ „Паисий Хилендарски“ гр. Пловдив, 2014.
    2014 Gyurhan H. Nedzhibov, A derivative-free iterative method for simultaneously computing an arbitrary number of zeros of nonlinear equations, Computers & Mathematicswith Applications, Volume 63, Issue 7, pp. 1185–1191, (2012). ЦИТИРАНА В: Miodrag S. Petkovic & Lidija Z. Rancic, On the guaranteed convergence of new two-point root-finding methods for polynomial zeros, Springer, Numerical Algorithms, 67: 187-222, (2014).
    2013 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Mahdi Abdollahi, Ayaz Isazadeh, and Davoud Abdollahi, Imperialist competitive algorithm for solving systems of nonlinear equations, Computers & Mathematics with Applications, 65(12), pp.1894-1908, (2013)
    2013 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: J Dutta, A Mandal, A Probabilistic Interval Division Method for Solving Nonlinear Equations, International Journal of Advanced Research in Computer Science and software Engineering, Volume 3, Issue 8, August 2013
    2013 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: J. Jayakumar, and P. Jayasilan, Second Derivative Free Modification with a Parameter For Chebyshev’s Method, International Journal of Computational Engineering Research, Vol. 03, Issue 8, (2013)
    2013 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: J. Jayakumar, Generalized Simpson-Newtons Method for Solving Nonlinear Equations with Cubic Convergence, IOSR Journal of Mathematics (IOSR-JM), Volume 7, Issue 5 (Jul. - Aug. 2013), pp. 58-61
    2013 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: V Kanwar, S Kumar, R Behl, Several New Families of Jarratt’s Method for Solving Systems of Nonlinear Equations, Applications & Applied Mathematics, Vol. 8, Issue 2 (Decem ber 2013), pp. 701 – 716
    2013 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: J. Jayakumar, M. Kalyanasundaramp, Generalized Power means Modification of Mewton’s Method for Simple Roots of Nonlinear Equation, Int. J. Pure Appl. Sci. Technol., 18(2), (2013), pp. 45-51
    2013 Gyurhan H. Nedzhibov, A derivative-free iterative method for simultaneously computing an arbitrary number of zeros of nonlinear equations, Computers & Mathematicswith Applications, Volume 63, Issue 7, pp. 1185–1191, (2012). ЦИТИРАНА В: Miodrag S. Petkovic, Lidija Z. Rancic, On the guaranteed convergence of new two-point root-finding methods for polynomial zeros, Numerical Algorithms, October 2013, DOI: 10.1007/s11075-013-9782-z
    2012 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Hongmin Ren and Ioannis K. Argyros, Improved local analysis for a certain class of iterative methods with cubic convergence, Numerical Algorithms, Volume 59, Number 4, (2012), 505-521;
    2012 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: M. Sharifi, D.K.R. Babajee, F. Soleymani, Finding the solution of nonlinear equations by a class of optimal methods, Computers & Mathematics with Applications, Volume 63, Issue 4, Feb 2012, Pages 764–774;
    2012 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: V. Kanwar, S. K. Tomar, Sukhjit Singh, Sanjeev Kumar, Note on Super-Halley Method and its Variants, Tamsui Oxford Journal of Information and Mathematical Sciences, Vol. 28(2), Pages 191-216, (2012) ;
    2012 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: S.Taheri, M.Mammadov, SOLVING SYSTEMS OF NONLINEAR EQUATIONS USING A GLOBALLY CONVERGENT OPTIMIZATION ALGORITHM, Global Journal of Technology & Optimization, pp. 132–138, vol. 3, (2012);
    2012 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Alicia Cordero, Josе L. Hueso, Eulalia Martinez, Juan R. Torregrosa, Increasing the convergence order of an iterative method for nonlinear systems, Applied Mathematics Letters, Volume 25, Issue 12, December 2012, Pages 2369–2374;
    2012 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Muhammad Aslam Noor, Khalida Inayat Noor and Muhammad Waseem, Higher-order Iterative Algorithms for Solving Nonlinear Equations, World Applied Sciences Journal 16 (12): 1657-1663, 2012
    2012 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: V. Kanwar, S. K. Tomar, S. Singh, S. Kumar, Note on Super-Halley Method and its Variants, Tamsui Oxford Journal of Information and Mathematical Sciences, 28(2), (2012), pp.191-216
    2011 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Ahlam J. Kaleel, Huda H. Omran and Salam J. Majeed, New Formulation of Third and Sixth Order Iterative Methods for Solving Nonlinear Equations, Journal of Basrah Researches ((Sciences)), Volume 37, Number 4 .D (2011), pp.87-95;
    2011 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: M. Jaberipour, E. Khorram, B. Karimi, Particle swarm algorithm for solving systems of nonlinear equations, Computers & Mathematics with Applications, Volume 62, Issue 2, July 2011, Pages 566-576;
    2011 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: M. T. Darvishi and Byeong-Chun Shin, High-order Newton-Krylov methods to solve systems on nonlinear equations, J. KSIAM, Vol.15, No.1, pp. 19–30, (2011);
    2011 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Efficient high-order methods based on golden ratio for nonlinear systems, Applied Mathematics and Computation, Volume 217, Issue 9, 1 January 2011, Pages 4548-4556
    2011 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: M Waseem, On Some Iterative Methods for Solving System of Nonlinear Equations, PhD Thesis In Mathematics, COMSATS Institute of Information Technology Islamabad, Pakistan, 2011
    2010 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Nazir Ahmad Mir, Khalid Ayub and Arif Rafiq, A third-order convergent iterative method for solving non-linear equations, International Journal of Computer Mathematics, Vol 87, Issue 4, 2010, pages 849-854;
    2010 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Sanjeev Kumar, Vinay Kanwar, Sukhjit Singh, Modified Efficient Families of Two and Three-Step Predictor-Corrector Iterative Methods for Solving Nonlinear Equations, Applied Mathematics, 2010, 1, 153-158;
    2010 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Diyashvir Kreetee Rajiv Babajee and M. Z. Dauhoo, Convergence and spectral analysis of the Frontini-Sormani family of multipoint third order methods from quadrature rule, Numerical Algorithms, Volume 53, Number 4, (2010), 467-484;
    2010 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: Fiza Zafar, Nazir Ahmad Mir, A generalized family of quadrature based iterative Methods, General Mathematics, Vol. 18, No. 4 (2010), pp. 43-51;
    2010 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: F. Zafar, Some Generalizations of Ostrowski Inequalitites and their applications to numerical integration and Special means. PhD thesis, Bahauddin Zakariya University, Multan, (2010);
    2010 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Fiza Zafar, Nazir Ahmad Mir, A generalized family of quadrature based iterative Methods, General Mathematics, Vol. 18, No. 4 (2010), pp. 43-51;
    2010 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Nazir Ahmad Mir, Naila Rafiq, Nusrat Yasmin, Quadrature based three-step iterative method for non-linear equations, General Mathematics, Vol. 18, No. 4 (2010), pp. 31-42;
    2010 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Diyashvir Kreetee Rajiv Babajee and M. Z. Dauhoo, Convergence and spectral analysis of the Frontini-Sormani family of multipoint third order methods from quadrature rule, Numerical Algorithms, Volume 53, Number 4, (2010);
    2010 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Meng, A., Zeng, Z., A novel iteration approach for the simultaneous extraction of all roots of nonlinear equation, (2010), Journal of Information and Computational Science, 7 (14), pp. 3043-3049;
    2010 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Sanjeev Kumar, Vinay Kanwar, Sukhjit Singh, Modified Efficient Families of Two and Three-Step Predictor-Corrector Iterative Methods for Solving Nonlinear Equations, Applied Mathematics, 2010, 1, 153-158;
    2010 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Haijun Wang and Hao Liu, Note on a Cubically Convergent Newton-Type Method Under Weak Conditions, Acta Applicandae Mathematicae, Vol 110, Num 2, (2010), 725-735;
    2010 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Shin, B.C., Darvishi, M.T., Kim, C.H., A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems, (2010), Applied Mathematics and Computation, 217 (7), pp. 3190-3198;
    2010 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Fadi Awawdeh, On new iterative method for solving systems of nonlinear equations, Numerical Algorithms, Volume 54, Number 3, (2010), 395-409;
    2010 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: J.S.C. Prentice, First-principles Derivation of a Third-order Method for Solving a Two-dimensional Nonlinear System, Journal of Mathematics Research, Vol 2, No 4, (2010), p.57;
    2010 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Alicia Cordero, Jose L. Hueso, Eulalia Martinez, Juan R. Torregrosa, A modified Newton-Jarratts composition, Numerical Algorithms, September 2010, Volume 55, Issue 1, pp 87-99
    2010 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Accelerated methods of order for systems of nonlinear equations, Journal of Computational and Applied Mathematics, Volume 233, Issue 10, 15 March 2010, Pages, 2696-2702;
    2010 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Grau-Sanchez, M., Noguera, M., Gutierrez, J.M., On some computational orders of convergence, Applied Mathematics Letters, 23 (4) , (2010), pp. 472-478;
    2010 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Grau-Sanchez, M., Noguera, M., Gutierrez, J.M., On some computational orders of convergence, Applied Mathematics Letters, 23 (4) , (2010), pp. 472-478;
    2010 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: A. Cordero, J. L. Hueso, E. Martinez, J.R. Torregrosa, Iterative methods for use with nonlinear discrete algebraic models, Mathematical and Computer Modelling, Volume 52, Issues 7-8, Oct 2010, Pages 1251-1257
    2010 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Meng, A., Zeng, Z., A novel iteration approach for the simultaneous extraction of all roots of nonlinear equation, (2010), Journal of Information and Computational Science, 7 (14), pp. 3043-3049
    2009 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: C. Chun, B. Neta, Certain improvements of Newton’s method with fourth-order convergence, Applied Mathematics and Computation, Volume 215, Issue 2, 15 September 2009, Pages 821-828;
    2009 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: H. Ren, Q. Wu, Convergence ball and error analysis of a family of iterative methods with cubic convergence, Applied Mathematics and Computation, Volume 209, Issue 2, 15 March 2009, Pages 369-378;
    2009 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: N. Kyurkchiev, A. Iliev, A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence, Serdica Journal of Computing, 2009, Vol 3,Num 1,pp.47-74;
    2009 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: C. Chun, B. Neta, Certain improvements of Newton’s method with fourth-order convergence, Applied Mathematics and Computation, Volume 215, Issue 2, 15 September 2009, Pages 821-828;
    2009 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: H. Ren, Q. Wu, Convergence ball and error analysis of a family of iterative methods with cubic convergence, Applied Mathematics and Computation, Volume 209, Issue 2, 15 March 2009, Pages 369-378;
    2009 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: N. Kyurkchiev, A. Iliev, A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence, Serdica Journal of Computing, 2009, Volume 3, Number 1, pp.47-74;
    2009 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Nazir Ahmad Mir, An Efficient Three-Step Iterative Method for Non-Linear Equations, Int. Journal of Math. Analysis, Vol. 3, 2009, no. 40, pp. 1989 – 1996;
    2009 G.H. Nedzhibov, M.G. Petkov, On Analitic Iterative Functions for Solving Nonlinear Equations and Systems of Equations, In: Numerical Analysis and Application, LNCS, Springer Verlag, Berlin Heidelberg, (2004) ЦИТИРАНА В: N. Kyurkchiev, A. Iliev, A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence, Serdica Journal of Computing, 2009, Volume 3, Number 1, pp.47-74;
    2009 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Sep2005, Vol. 168 Issue 1, p320-332, 13p ЦИТИРАНА В: N. Kyurkchiev, A. Iliev, A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence, Serdica Journal of Computing, 2009, Volume 3, Number 1, pp.47-74;
    2009 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Zhang, Y., Zeng, Z.-S., Neural network algorithm for the simultaneous extraction of all roots of algebraic polynomial, 2009 CIS 2009 - 2009 International Conference on Computational Intelligence and Security 2, art. no. 5375995, pp. 161-164;
    2009 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Zhang, Y., Zeng, Z.-Z., A new method for simultaneous extraction of all roots of algebraic polynomial, 2009 CIS 2009 - 2009 International Conference on Computational Intelligence and Security 1, art. no. 5376640, pp. 197-200;
    2009 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Yang, X.-L., Zeng, Z.-Z., An algorithm finding roots of algebraic polynomial based on dynamic PID neurons, 2009 3rd International Symposium on Intelligent Information Technology Application, IITA 2009 3, art. no. 5370149, pp. 616-619;
    2009 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: N. Kyurkchiev, A. Iliev, A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence, Serdica Journal of Computing, 2009, Volume 3, Number 1, pp.47-74;
    2009 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Haijun, W., New third-order method for solving systems of nonlinear equations, Numerical Algorithms, (2009), 50 (3), pp. 271-282;
    2009 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Grau-Sanchez, M., Gutierrez, J.M., Zero-finder methods derived from Obreshkov’s techniques, 2009, Applied Mathematics and Computation, 215 (8), pp. 2992-3001;
    2009 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Sep2005, Vol. 168 Issue 1, p320-332, 13p ЦИТИРАНА В: Hueso, J.L., Martinez, E., Torregrosa, J.R., Modified Newtons method for systems of nonlinear equations with singular Jacobian, 2009, Journal of computational and applied mathematics, 224 (1), pp.77-83;
    2009 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Ren, H., Wu, Q., Bi, W., New variants of Jarratts method with sixth-order convergence, 2009, Numerical Algorithms 52 (4), pp. 585-603;
    2008 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: C. Chun, B. Neta, Some modification of Newton’s method by the method of undetermined coefficients, Computers & Mathematics with Applications, Volume 56, Issue 10, 2008, Pages 2528-2538;
    2008 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Nazir Ahmad Mir, Nusrat Yasmin, Naila Rafiq, Quadrature based two-step iterative methods for non-linear equations, General Mathematics, Vol. 16, No. 1 (2008), 33-45;
    2008 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: C. Chun, B. Neta, Some modification of Newton’s method by the method of undetermined coefficients, Computers & Mathematics with Applications, Volume 56, Issue 10, 2008, Pages 2528-2538;
    2008 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Sep2005, Vol. 168 Issue 1, p320-332, 13p ЦИТИРАНА В: Nazir Ahmad Mir and Khalid Ayub, On fourth order simultaneously zero-finding method for multiple roots of complex polynomial equations, General Mathematics, Vol. 16, No. 3 (2008), pp. 119–131;
    2008 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Wang, C., Zeng, Z., A neural-network algorithm for the simultaneous inclusion of polynomial zeros, 2008 Proceedings - 2008 International Conference on Computational Intelligence and Security, CIS 2008 1, art. no. 4724609, pp. 30-34;
    2008 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Zhu, W., Zeng, Z., Zhou, Y., A fast neural-network algorithm for simultaneous extraction of all roots of algebraic polynomial, 2008, International Conference on Signal Processing Proceedings, ICSP , art. no. 4697750, pp. 2888-2891;
    2008 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Haijun, W., On new third-order convergent iterative formulas, Numerical Algorithms, 48 (4), (2008), pp. 317-325;
    2008 G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, Journal of Comput. And Appl. Math, 222, 244–250, (2008) ЦИТИРАНА В: Z. Xiaojian, Modified Chebyshev–Halley methods free from second derivative, Applied Mathematics and Computation, Volume 203, Issue 2, 15 September 2008, Pages 824-827;
    2008 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Hui, W., LiYing, X., Ping, L., An adaptive method for simultaneous extraction of all roots of algebraic polynomial, 2008 Proceedings - International Conference on Intelligent Computation Technology and Automation, ICICTA 2008 2, art. no. 4659903, pp. 953-956;
    2008 G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ЦИТИРАНА В: Wang, C., Zeng, Z., A neural-network iteration formula for the simultaneous inclusion of polynomial zeros, 2008 Proceedings - 2008 International Conference on Computational Intelligence and Security, CIS 2008 2, art. no. 4724757, pp. 162-165;
    2008 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Sep2005, Vol. 168 Issue 1, p320-332, 13p ЦИТИРАНА В: Kocak, M.C., Simple geometry facilitates iterative solution of a nonlinear equation via a special transformation to accelerate convergence to third order, 2008, Journal of Computational and Applied Mathematics, 218 (2), pp. 350-363;
    2008 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Sep2005, Vol. 168 Issue 1, p320-332, 13p ЦИТИРАНА В: Kocak, M.C., A class of iterative methods with third-order convergence to solve nonlinear equations, 2008, Journal of Computational and Applied Mathematics, 218 (2), pp. 290-306;
    2007 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: A. Rafiq, S. Hussain, F. Ahmad, M. Awais and F. Zafar, An efficient three-step iterative method with sixth-order convergence for solving nonlinear equations, International Journal of Computer Mathematics, Volume 84, Issue 3, 2007, pages 369-375;
    2007 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Arif Rafiq, Sifat Hussain, Farooq Ahmad, Muhammad Awais, New iterative methods, Applied Mathematics and Computation, Volume 189, Issue 2, 15 June 2007, Pages 1260–1267;
    2007 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: Nazir Ahmad Mir, Tooba Zaman, Some quadrature based three-step iterative methods for non-linear equations, Applied Mathematics and Computation, Volume 193, Issue 2, 1 Nov 2007, Pages 366–373;
    2007 G.H. Nedzhibov, An acceleration of iterative processes for solving nonlinear equations, Applied Mathematics & Computation, Sep2005, Vol. 168 Issue 1, p320-332, 13p ЦИТИРАНА В: Davod Khojasteh Salkuyeh, A family of Newton-type methods for solving nonlinear equations, International Journal of Computer Mathematics, Volume 84, Issue 3, 2007, pages 411-419;
    2007 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: V. Kanwar and S. K. Tomar, Modified families of multi-point iterative methods for solving nonlinear equations, Numerical Algorithms, Vol 44, Number 4 (2007), 381-389;
    2007 G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multi-point iterative methods for solving nonlinear eqautions, Numerical Algorithms, Vol. 42 Issue 1, p127-136, (2006) ЦИТИРАНА В: Davod Khojasteh Salkuyeh, A family of Newton-type methods for solving nonlinear equations, International Journal of Computer Mathematics, Vol 84, Issue 3, 2007, pages 411-419;
    2006 V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, In: Application of Mathematics in Engineering and Economics, Heron Press, Sofia, (2002), pp. 278–286 ЦИТИРАНА В: D.K.R. Babajee, M.Z. Dauhoo, An analysis of the properties of the variants of Newton’s method with third order convergence, Applied Mathematics and Computation, Vol 183, Issue 1, 1 Decr 2006, Pages 659–684;
    2006 G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ЦИТИРАНА В: D.K.R. Babajee, M.Z. Dauhoo, An analysis of the properties of the variants of Newton’s method with third order convergence, Applied Mathematics and Computation, Vol 183, Issue 1, 1 Dec 2006, Pages 659–684;